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The stability with respect to two- and three-dimensional perturbations of natural- 
convection flow of air in a square enclosure with differentially heated vertical walls 
and periodic boundary conditions in the lateral direction has been investigated. 
The horizontal walls are either conducting or adiabatic. The solution is numerically 
approximated by Chebyshev-Fourier expansions. In contrast to the assumption made 
in earlier studies, three-dimensional perturbations turn out to be less stable than 
two-dimensional perturbations, giving a lower critical Rayleigh number in the three- 
dimensional case for the onset of transition to turbulence. Both the line-symmetric 
and line-skew-symmetric three-dimensional perturbations are found to be unstable. 
The most unstable wavelengths in the lateral direction typically are of the same size 
as the enclosure. In the nonlinear solution new symmetry breaking occurs, giving 
either a steady or an oscillating final state. The three-dimensional structures in the 
nonlinear saturated solution consist of counter-rotating longitudinal convection rolls 
along the horizontal walls. The energy balance shows that the three-dimensional 
instabilities have a combined thermal and hydrodynamic nature. Besides the stability 
calculations, two- and three-dimensional direct numerical simulations of the weakly 
turbulent flow were performed for the square conducting enclosure at the Rayleigh 
number los, In the two-dimensional case, the time-dependent temperature shows 
different dominant frequencies in the horizontal boundary layers, vertical boundary 
layers and core region, respectively. In the three-dimensional case almost the same 
frequencies are found, except for the horizontal boundary layers. The strong three- 
dimensional mixing leaves no, or only very weak, three-dimensional structures in the 
time-averaged nonlinear solution. Three-dimensional effects increase the maximum of 
the time- and depth-averaged wall-heat transfer by 15%. 

1. Introduction 
Natural-convection flows appear in many technical applications, like cooling of 

electronic systems, cooling of nuclear reactors, climate conditioning of rooms and 
solar collectors. The present study concentrates on the transitional flow in enclosures 
with differentially heated vertical walls. The horizontal walls are either conducting 
(they have a linear temperature profile) or adiabatic (thermally isolated). If the 
dimensionless temperature difference (the Rayleigh number) is sufficiently large, the 
flow structure is characterized by horizontal and vertical boundary layers along the 
walls and by a core region which is thermally stratified. 
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The steady two-dimensional flow of air in a square differentially heated enclosure 
with adiabatic horizontal walls has become a popular test case among heat-transfer 
computationalists. Benchmark results up to Ra = lo6 were provided by de Vahl Davis 
& Jones (1983) and up to Ra = lo8 by Le Quirk (1991). In the past few years several 
authors have investigated at which critical Rayleigh number the two-dimensional 
steady flow becomes unstable with respect to two-dimensional perturbations, yielding 
the first bifurcation of the asymptotic large-time solution. For example, Le QuCrC 
(1987) and Le Qukrk & Alziary de Roquefort (1986a,b) solved the unsteady Navier- 
Stokes equations for air in enclosures with adiabatic or conducting horizontal walls. 
The aspect ratio A, (height over width) was varied between 1 and 10. Paolucci & 
Chenoweth (1989) considered air in enclosures with adiabatic horizontal walls and 
0.5 d A, < 3. Winters (1987) detected the first bifurcation for air in a square enclosure 
with conducting horizontal walls by examining the eigenvalues of the two-dimensional 
steady flow. All these studies show that the first two-dimensional instability is due to 
a supercritical Hopf bifurcation, giving a transition from a steady flow to a periodic 
unsteady flow. 

Because the enclosure flow consists of different high-Rayleigh-number structures, 
several more-or-less fundamental physical instability mechanisms are possible. The 
most unstable one (with the lowest critical Rayleigh number, Racr) depends on 
the aspect ratio and on the type of boundary conditions on the horizontal walls. 
For adiabatic air-filled enclosures with A, 2 4, the first two-dimensional insta- 
bility occurs in the vertical boundary layer and is of the Tollmien-Schlichting 
type, giving travelling waves. For adiabatic enclosures with 0.5 < A, < 3, the 
first two-dimensional instability occurs in the downstream corners of the vertical 
boundary layers and seems to be of the Kelvin-Helmholtz type. Conducting en- 
closures turn out to become unstable at a much lower critical Rayleigh number 
than adiabatic enclosures : a square enclosure with conducting horizontal walls has 
Racr w 2 x lo6, whereas an adiabatic enclosure has Racr = 2 x lo8. For the con- 
ducting case the first instability is related to the Rayleigh-Bknard instability, be- 
cause the temperature at the horizontal walls introduces local regions with unstable 
stratification. 

All the above mentioned computational studies are restricted to two-dimensional 
instabilities. There is no reason, however, to assume that two-dimensional pertur- 
bations are less stable than three-dimensional perturbations, as the existence of a 
Squire-like principle, which holds for forced-convection boundary layers, is unknown 
for natural-convection flows. Three-dimensional effects can be either due to the pres- 
ence of lateral walls or to an intrinsic instability of the two-dimensional base flow. The 
former effect can be calculated by introducing three-dimensional walls with no-slip 
boundary conditions, whereas the latter effect can be calculated by assuming that the 
flow is periodic in the third direction. 

The first aim of the present study is to find the influence of three-dimensional waves 
on the stability of two-dimensional base flows. The flow in the (x,z)-plane (where x and 
z are the width and height coordinates, respectively) is approximated by Chebyshev 
polynomials and the depth dependence is included by Fourier modes. Different 
depth aspect ratios will be considered, applying periodic boundary conditions in 
the lateral direction. Both conducting and adiabatic square enclosures (A,  = 1) are 
investigated, as several existing two-dimensional studies have also concentrated on 
these configurations. The range of unstable waves will be detected by solving the 
unsteady three-dimensional Navier-Stokes equations, in which the perturbations are 
linearized with respect to the two-dimensional (steady or unsteady) base flow. For 
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some linearly unstable wavenumbers, full nonlinear computations will also be done 
to investigate the structure of the supercritical three-dimensional state. 

The second aim of our study is to obtain insight in the weakly turbulent two- 
and three-dimensional flow in a square conducting enclosure at Ra = 10'. This 
Rayleigh number is relatively far above the critical Rayleigh number where the first 
unsteadiness and three-dimensional effects appear. The three-dimensional nonlinear 
calculation is made for a fixed depth of 0.1H. Differences between the two- and 
three-dimensional flow are detected by comparison of the time-averaged solutions 
and by comparison of the characteristic time scales as found in the autocorrelation of 
the time signal at different monitoring points. The three-dimensional direct numerical 
simulation of the weakly turbulent flow at Ra = 10' took about 100 CPU hours on a 
supercomputer. In future studies the depth can be increased (say up to 2H) and the 
Rayleigh number can be increased. This all requires more Chebyshev polynomials 
and more Fourier modes, and thus more CPU time. The calculations as presented 
here are intended to bring us a step closer to the direct numerical simulation of full 
three-dimensional turbulent natural convection in differentially heated enclosures. 

2. Mathematical description 
We consider a Newtonian fluid in an enclosure with height H ,  width W and depth 

D. The vertical z-axis has its positive direction opposite to that of gravity g.  In the 
horizontal directions x is the width coordinate and y is the lateral coordinate. The 
left wall (x = 0) is hot (with uniform temperature Th) and the right wall (x = W )  
is cold (with uniform temperature Tr). The temperature difference AT = Th - T, 
is assumed to be sufficiently small for the Boussinesq approximation to hold. The 
resulting Navier-Stokes equations read 

aui 
a x j  
- = 0, 1 
+ g p (  T - T0)di2 + v -+- aui auiuj - - 

at axj P axi 
d2 T aT aujT - 

at axj axjaxj 
-+- - u- J 

Here t is the time, ut = u, u2 = v and u3 = w are the velocity components in the x1 = x, 
x2 = y and x3 = z directions respectively, T is the temperature, p is the pressure, p 
is the density, /3 is the coefficient of thermal expansion, v is the kinematic viscosity, 
and u is the thermal diffusivity. These equations are made dimensionless with the 
length scale H ,  the convective time scale t ,  = H/(gpATH)' /2 ,  the temperature scale 
TO = (Th + Tc)/2,  and the temperature difference AT.  The convective time scale is the 
correct scale for the vertical boundary layers, but probably not for the core region 
and the horizontal boundary layers. However, in the present study the choice of the 
scalings is not important, as we will always specify the characteristic numbers; the 
dimensionless solution depends on only the Rayleigh number (Ra = gpATH3Pr/v2), 
the Prandtl number ( P r  = v / a ) ,  the height aspect ratio (A,  = H /  W ) ,  and the depth 
aspect ratio (AY = D/ W ) .  Only air ( P r  = 0.71) in a square enclosure (A,  = 1) will 
be considered here. In what follows t* denotes the dimensionless time (= t / t r )  and f '  
denotes the dimensionless frequency (= f t J .  

= w = 0 at the walls x = 0, x = W ,  z = 0 
and z = H ;  T = Th at x = 0 and T = T, at x = W ;  dT/dy = 0 at z = 0 and 

The boundary conditions are: u = 
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z = H (adiabatic case), or T = Th - (x /W)AT at z = 0 and z = H (conducting case); 
periodic boundary conditions at y = 0 and at y = D. 

The spatial discretization for all dependent variables 4 = (u, u, w , p ,  T )  is based on 
an expansion with Chebyshev polynomials T,(x*)T,(z*) in the (x,z)-plane and on an 
expansion with Fourier modes in the y"-direction. Here x', y' and Z* are the rescaled 
coordinates x* = 2x/ W - 1, y" = y/D and Z* = 2z/H - 1 respectively. The expansion 
reads 

N M K  

a n d ( t )  and b d ( t )  are the real-valued Chebyshev-Fourier coefficients, x i  and zk are 
taken as the Gauss-Lobatto points, whereas the y; points are distributed equidistantly. 

The nonlinear terms are evaluated pseudo-spectrally. The time derivatives are 
discretized with second-order finite differences, applying an explicit Adams-Bashforth 
extrapolation to the nonlinear convection terms, and an implicit backward-Euler 
scheme to the diffusion terms. The pressure is evaluated fully implicitly at the new 
time, and is solved with the influence matrix technique as proposed by Le QuCrC & 
Alziary de Roquefort (1982, 1985). 

3. Stability 
3.1. Initial-ualue problem 

For a two-dimensional steady and unsteady base flow, the linear stability with respect 
to three-dimensional disturbances can be calculated by solving the linearized system 
that is found from equations (2.1) after replacing the nonlinear convective terms by 
their linearized counterparts, 

with 4 = {u,u, w, T } .  The subscript b denotes the two-dimensional base flow, with 
ub 3 0. The base flow is found by integrating the two-dimensional unsteady equations 
sufficiently far in time until transient effects have disappeared and the solution has 
reached one of the attractors of the unsteady Navier-Stokes equations. 

A classical way to investigate the linear stability is the eigenvalue analysis. Disad- 
vantages of this approach are that the base flow needs to be steady and that it cannot 
be used to determine the nonlinear stability. Extension of the eigenvalue method to a 
periodic base flow is possible, but requires the use of the more complicated Floquet 
theory. 

Instead of solving the eigenvalue problem, in the present study the linear stability 
is examined by solving the linear system (2.1), using (3.1), as an initial-value problem. 
We introduce the perturbation 4" = 4 - f$b with the form 

4'' = &x, z ,  t )  exp(iay). ( 3 4  
The term exp(iay) can be rewritten as the pair cos(ay) and sin(ay), implying that ex- 
pression (3.2) is similar to the Fourier expansion for 4 (see (2.2)), with K = 1 (and M = 
27cklD). This shows that the linear initial-value problem can be solved with the same 
code as described in $2, provided the nonlinear terms are linearized according to (3.1). 

The zeroth Fourier mode is actually the two-dimensional base flow 4 b .  As the 
evolution of the zeroth Fourier mode is part of the three-dimensional calculation, 
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the stability of both steady and unsteady (periodic or chaotic) base flows can be 
considered. 

At t = 0 the two-dimensional base solution is prescribed for the zeroth Fourier 
mode and a small perturbation is introduced in the non-zero Fourier modes. If 
the energy in a given Fourier mode does not vanish, the mode is unstable. As a 
representative measure of the energy in the Fourier components Ecosk(t)  and Esink(t) 
for the temperature, we take the square root of the Chebyshev-Fourier coefficients 
a;,k(t) and b;mk(t), respectively, averaged over the total number of Chebyshev modes. 
For large time, E will be solely determined by the most unstable eigenvalue o* = o+io  
(with G and o real), implying that E increases according to exp(ot)lcos(ot)l. It is 
noted that (cos(wt)l is periodic with the frequency o/z, which is twice the frequency 
of the temperature signal itself (f = w/2z) .  

3.2. Symmetry properties 
The two-dimensional base flow admits the skew-symmetry property # b ( X ,  z ,  t )  = 
-#b(W - x , H  - z ,  t ) ,  with 4 b  = {u, w, T - To}. Solutions 4" (= # - # b )  of the 
linearized three-dimensional unsteady Navier-Stokes equations admit the following 
two types of symmetry if the two-dimensional base flow is skew symmetric: 
(i) skew symmetry with respect to (x = W / 2 ,  z = H / 2 ) :  +"(x,y ,z , t )  = y#"(W - 
x, y ,  H - z ,  t),  with y = -1 for # = {u, w, T )  and y = 1 for (p = v ;  
(ii) symmetry with respect to (x = W / 2 ,  z = H / 2 ) :  +"(x, y ,  z ,  t )  = y#"( W - x,y, H - 
z , t ) ,  with y = 1 for 4 = {u,w, T }  and y = -1 for # = t i .  

The nonlinear three-dimensional equations, together with the boundary conditions 
specified in $2, admit three types of symmetry: 
(i) plane symmetry with respect to y = y ,  : 4(x, y ,  z ,  t )  = y$(x, 2y, - y ,  z ,  t ) ,  with y = 1 
for 4 = {u, w, T - To} and y = -1 for # = v ;  
(ii) line-skew symmetry with respect to (x = W / 2 , z  = H / 2 ) :  # ( x , y , z , t )  = y$(W - 
x , y , H  - z , t ) ,  with y = -1 for 4 = {u ,w,T  - To} and y = 1 for # = v ;  
(iii) point-skew symmetry with respect to (x = W / 2 , y  = y,,z = H / 2 ) :  # ( x , y , z , t )  = 
y # ( W - x x , 2 y , ~ - y , H - z , t ) ,  with?=-1  for#={u,u,w,T-To}.  
These symmetries can be broken through bifurcations. The solution will be denoted as 
symmetric or skew symmetric if the mirrored temperature has the same sign as or a dif- 
ferent sign to, respectively, the original temperature. Owing to the periodic boundary 
conditions the solution is marginally stable in the lateral direction; i.e. if #(x, y ,  z ,  t )  
is a solution of the equations, #(x, y + Ay, z ,  t )  is also a solution. Furthermore, also 
owing to the periodic boundary conditions, if one symmetry is found on the interval 
0 < y d D, a second symmetry of the same type also exists on the same interval. In 
the case that the solution is plane symmetric, v = 0 in the planes y = y,, y = y ,  + D / 2 ,  
and y = y ,  - D / 2 .  If the solution is plane symmetric and line-skew symmetric, the 
solution is also point-skew symmetric with respect to (x = W / 2 ,  y = ys ,  z = H / 2 ) .  

4. Stability for an enclosure with conducting horizontal walls 
4.1. Linear stability 

The two-dimensional solution for a square enclosure with conducting horizontal walls 
(using 33 x 33 Chebyshev polynomials) is steady for R a  = lo6 and for R a  = 1.8 x lo6, 
whereas a periodic unsteady state with f *  = 0.255 is found for Ra = 2.3 x lo6. Hence, 
1.8 x lo6 < Racr,2D < 2.3 x lo6, which agrees with existing studies, like Le Querd 
(1987) and Winters (1987). The isotherms for the steady two-dimensional solution at 
R a  = 1.8 x lo6 (see figure l a )  illustrate that, owing to the large Rayleigh number, 
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(a) (b) (c) 

FIGURE 1. Temperature in the conducting enclosure at Ra = 1.8 x lo6: (a) two-dimensional base 
state, (b)  unstable skew-symmetric perturbations (2 = H ) ,  ( c )  unstable symmetric perturbations 
(a = H I .  

boundary layers have been formed along the walls with a stratified intermediate 
core region. The most important numerical results described in this and subsequent 
sections are summarized in table 1. 

To determine the three-dimensional stability of these two-dimensional base states, 
the temperature is perturbed according to 

K 

( T f x ,  y ,  z )  - TO) = ( T~D(x, Z) - TO)( 1 + e C(cos(2nky/D) + sin(2nkylD)); (4.1) 
k=O 

o < x < w ;  O b y d D ;  O < z < H ,  
with e = low5. This perturbed temperature field is used as an initial solution in the 
three-dimensional linearized code. The two-dimensional velocity field is not explicitly 
perturbed, as it will be directly affected by the temperature perturbation through the 
buoyancy source. 

At Ra = lo6 all wavelengths tested were stable, whereas at Ra = 1.8 x lo6 
wavelengths in the range 0.6 < I / H  < 1.1 turn out to be unstable. This shows that 
three-dimensional perturbations are less stable than two-dimensional perturbations 
and that lo6 < Rucr,3D < 1.8 x lo6. The linear stability was also investigated for the 
two-dimensional periodic flow at Ra = 2.3 x lo6, showing that unstable waves occur 
in the range 0.4 < 1/H < 5. The range of unstable wavelengths thus quickly extends 
with increasing Rayleigh number. 

Some examples of the linear stability at Ra = 1.8 x lo6 are given in figure 2. The 
energy for I = H has a frequency f '  = 0.449 at large time. The latter frequency is 
not very clear in figure 2(b): it only thickens the line but if a portion is enlarged, the 
frequency shows up. We checked at different monitoring points that the temperature 
perturbation grows with half this frequency, i.e. f '  = 0.224, illustrating that the growth 
of a single most unstable eigenvalue is in fact observed (see $3.1). 

The sudden change in the slope of the energy growth for I = H in figure 2(b) is 
due to the existence of two unstable eigenvalues, namely one eigenvalue (with 01 t ,  = 
0.0026, fl' = 0.268) that represents the unstable skew-symmetric linear perturbations, 
and the other eigenvalue (with cr2tc = 0.0118, f2*  = 0.224) that represents the unstable 
symmetric linear perturbations. As 02 > n1, the symmetric perturbations are even 
more unstable than the skew-symmetric perturbations. The eigenvalue of the skew- 
symmetric mode could also be found by explicitly prescribing the skew symmetry. 

An animation of the perturbations in the (x,z)-plane revealed that the pertur- 
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First instabilities in the conducting enclosure 

e.g. periodic state with j' = 0.255 at Ra = 2.3 x lo6 

e.g. unstable waves 0.6 < 1/H < 1.1 at Ra = 1.8 x lo6, 
I = H has unstable skew-symmetric mode (with f' = 0.268) 
and unstable symmetric mode (with f' = 0.224) 

3D nonlinear state : steady state for Ra = 1.8 x lo6 and D = H ;  
periodic state with f' = 0.269 if line-skew symmetry is prescribed 

First instabilities in the adiabatic enclosure 

e.g. periodic state with f' = 0.0531 at Ra = 2 x lo8 
10' < Racr,30 < 10' 

e.g. unstable waves 0.1 < l / H  < 0.8 at Ra = lo8, 
1 = H/4 has unstable skew-symmetric mode and unstable 
symmetric mode (no frequency) 

with two dominant frequencies f' in the range 
0.005-0.01 and 0.025-0.045 

Weakly turbulent flow in the conducting enclosure 

: three dominant frequencies at Ra = 10': 
f' = 0.16 in the horizontal boundary layer, 
f' = 0.61 in the vertical boundary layer, 
f' = 0.077 in the core region 

2D base state : 1.8 X lo6 < RUcr,20 < 2.3 X lo6 

3D h e a r  stability : Racr,3D < Racr,zo ; lo6 < Racr,30 < 1.8 x lo6 

2D base state : lo8 < Racr,zo < 2 X 10' 

3D h e a r  stability : Racr,3D < Racr,zD ; 

3D nonlinear state : unsteady, chaotic state for Ra = lo8 and D = H/4, 

2D base state 

3D linear stability : unstable waves with 1/H > 0.05 at Ra = lo8 
3D nonlinear state : three dominant frequencies for Ra = lo8 with D = H/10: 

f' in the range 0.11-0.21 in the horizontal boundary layer, 
j' = 0.59 in the vertical boundary layer, 
f' = 0.073 in the core region 

TABLE 1. Summary of results. 

bations are travelling in a clockwise direction through the horizontal and vertical 
boundary layers. Similar travelling perturbations were found in the supercritical 
two-dimensional case. Figures l(b) and l(c) show snapshots of the isotherms of 
the unstable skew-symmetric perturbations (eigenvalue ol, fl), and of the unsta- 
ble symmetric perturbations (eigenvalue oz, f 2 ) .  Solid lines denote positive tem- 
perature perturbations, and dashed lines negative. If the combination of a dark 
and bright spot in a clockwise direction is defined as one structure, the unsta- 
ble skew-symmetric mode turns out to have five structures, whereas the symmetric 
mode has four structures. The skew-symmetric mode in this three-dimensional case 
has a close analogy with the first instability that enters the two-dimensional case: 
both are characterized by five structures and their frequencies are almost the same 
(f* = 0.255 versus 0.268). In contrast to this, the four structures found for the 
unstable symmetric mode in the three-dimensional case were never found in any 
of the reported two-dimensional unsteady studies. Winters (1987), however, deter- 
mined five eigenvalues of the two-dimensional steady base flow that could lead to 
a two-dimensional Hopf bifurcation. One of them, f '  = 0.215, is close to the fre- 
quency f 2 *  = 0.224 found here for the three-dimensional instability of the symmetric 
mode. 
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FWm 2. Linear stability for the conducting enclosure at Ra = 1.8 x lo6: (a) E,,, for 1 = H / 3 ,  ( b )  
E,,, for 1 = H .  

4.2. Nonlinear efects 
By time integration of the three-dimensional Navier-Stokes equations (2.1), the non- 
linear effects were determined for Ra = 1.8 x lo6 with four Fourier modes in the 
lateral direction ( K  = 4). The depth was taken as D = H .  The nonlinear growth of the 
energy in the different modes closely follows the linear growth until t’ NN 2000, where 
the nonlinear solution begm to oscillate. Later on, the oscillation suddenly stops and 
a steady final state is obtained. There is thus a remarkable difference between the 
nonlinear evolution, which gives a steady state, and the linear evolution, which gives 
an oscillating state. Concerning this difference, it is noted that, as explained in $3.2, 
the nonlinear solution cannot exactly admit the line-symmetric mode that was found 
to be most unstable in the linearized solution. The nonlinear interactions required 
to obtain a saturated nonlinear solution can easily lead to subsequent bifurcations, 
which explains the difference. On the other hand, the nonlinear solution can exactly 
admit line-skew symmetric modes. Indeed, when the line-skew symmetry was explic- 
itly prescribed during the time integration of the nonlinear equations, an oscillating 
final state was found with the frequency f’ = 0.269, which is close to the value 0.268 
found for the skew-symmetric linear mode. 

4.3. Structure of the nonlinear three-dimensional solution 
The three-dimensional steady solution at Ra = 1.8 x lo6 is both plane symmetric 
and point-skew symmetric. Figure 3(a) shows the isosurfaces of the temperature 
perturbations T” = 0.01AT and -0.01AT (the perturbation T” is defined here as the 
three-dimensional solution minus the depth-averaged contribution, i.e. T” = T - ( T ) ) .  
The solution is symmetric with respect to the planes ys and y, + H/2, and skew 
symmetric with respect to the points (x = H/2, y = y,+H/4, z = H/2) and (x = H/2, 
y = y, + 3H/4, z = H/2) .  Furthermore, the solution is also nearly skew symmetric 
with respect to the planes y, + H/4 and y, + 3H/4. As a result of this, the solution 
is also nearly symmetric with respect to the point (x = H/2, y = y, + H/2, z = H/2) 
and nearly symmetric with respect to the line (x = H/2, z = H/2). Figures 3(b) and 
3(c) split up the perturbation into a contribution that is exactly plane symmetric 
and plane-skew symmetric, and a contribution that remains, respectively. The first 
contribution was derived by setting the contributions of all even Fourier modes to 
zero. Figure 3(c) shows that the symmetry deviation is very small everywhere, except 
for the left lower and the right upper corners. It can easily be checked that these 
symmetries of the solution also imply that the contributions in figures 3(b) and 3(c) 
are symmetric and skew symmetric, respectively, with respect to the line (x = H/2, 
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FIGURE 3. Temperature perturbation for the conducting enclosure at Ra = 1.8 x lo6 (D = H ) :  
(a) isosurfaces of T” = 0.01AT and -O.OlAT, (b)  contribution that is exactly plane and skew 
symmetric, (c) remaining contribution. 

z = H/2). Therefore, these figures also represent the unique splitting of the solution 
into a line symmetric part and a skew-symmetric part. 

The temperature and velocity perturbations are plotted for different planes in figure 
4 (two periodic wavelengths are shown in the y-direction). The modulation of the 
three-dimensional waves is strongest in the horizontal and vertical boundary layers. 
For example, 6umnx is 43% of (urn,,), in which 6 denotes the difference between the 
maximum and minimum value for a quantity in the lateral direction and urn, is the 
maximum horizontal velocity at x = W/2. The modulation is negligible in the core 
region. 

There is a strong positive correlation between T” and W” in the boundary layers, 
i.e. in addition to the depth-averaged heat transfer the structures give an upward heat 
flux (( T”w”) = (Tw) - ( T ) ( w )  is positive). Figure 4(a)  gives the perturbation in the 
plane x = 0.038H, which is the vertical boundary layer parallel to the hot left vertical 
wall. The structures in this plane can also be seen in the three-dimensional plot in 
figure 3(a). These temperature perturbations introduce a secondary recirculating flow 
that is parallel to the vertical wall and extends along the full enclosure height. Figure 
4(b)  gives the perturbations in the midplane x = H / 2 ,  which is halfway between the 
differentially heated vertical walls. The temperature perturbation in the horizontal 
boundary layers introduces convection rolls, which have a strong streamwise vorticity 
(longitudinal rolls). Not all the secondary fluid that reaches the vertical boundary 
layer is circulated within the vertical boundary layer. As shown in figures 4(c) and 
4(d)  (horizontal midplane z = H/2 and a y-plane, respectively), some fluid leaves the 
vertical boundary layer and travels through the core to the vertical boundary layer 
on the other side. This causes a recirculation in horizontal planes of the core region. 
Figure 4(d)  also clearly illustrates that the solution is almost symmetric with respect 
to the line (x = 2312, z = H/2); the secondary flow has thus the same direction along 
both vertical walls. 

5. Stability for an enclosure with adiabatic horizontal walls 
5.1. Linear stability 

The two-dimensional solution for the square adiabatic enclosure (using 73 x 73 
Chebyshev polynomials) is steady for Ra = lo8, whereas a periodic unsteady solution 
with frequency f’ = 0.0531 is found for Ra = 2 x lo8. These two-dimensional 
results agree with existing studies, like Paolucci & Chenoweth (1989). The steady 
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FIGURE 4. Vectors of velocity perturbations and isolines of the temperature perturbation for the 
conducting enclosure at Ra = 1.8 x lo6 (D = H ) :  (a) x = 0.038H, (b )  x = H / 2 ,  (c) z = H / 2 ,  ( d )  
y-plane. 

two-dimensional temperature for Ra = lo8 (figure 5a) has thin boundary layers and 
a large stratified core region. The boundary layer separates and reattaches in the left 
upper and right lower corners. 

Three-dimensional linear stability calculations with respect to these two-dimensional 
base states reveal that all wavelengths tested are stable for Ra = lo6 and Ra = lo7, 
whereas unstable waves occur in the range 0.1 < 1 / H  < 0.8 for Ra = lo8 . Thus, 
it has been proven here that for an enclosure with adiabatic horizontal walls also, 
three-dimensional perturbations are less stable than two-dimensional perturbations. 

The most unstable wavelength at Ra = lo8 is 1/H = 0.25. Both the skew-symmetric 
mode and the symmetric mode for 1 = H/4 are unstable, and have the same growth 
rate at, = 0.164 for large time. No frequency is visible for large time, which indicates 
that the unstable eigenvalue will give a pitchfork bifurcation in the nonlinear solution. 
The occurrence of only one unstable eigenvalue for the adiabatic case is thus different 
from the conducting case, discussed in the previous section, where two distinct 
eigenvalues were found. The structure of unstable symmetric and skew-symmetric 
modes, as shown in figures 5(b)  and 5(c) ,  consists of a steady wave modulation in the 
core regions. 
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FIGURE 5. Temperature in the adiabatic enclosure at Ra = 10’: (a) two-dimensional base state, (b)  
unstable skew-symmetric perturbations (A = H/4), (c) unstable symmetric perturbations (2 = H/4). 
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FIGURE 6. Evolution of the temperature at x / H  = 0.5, y/H = 0.953 in the adiabatic enclosure with 

D = H/4 at Ra = lo8. 

5.2. Nonlinear eflects 
A nonlinear calculation was made for Ra = los with D = H/4, using 73 x 73 
Chebyshev polynomials and nine points in the lateral direction ( K  = 4 Fourier 
modes). The two-dimensional steady base flow was perturbed with equation (4.1). 
Although the three-dimensional solution first seemed to converge to a new steady 
state, as expected from the linear stability analysis, for increasing time non-vanishing 
unsteadiness entered the solution. The unsteady temperature evolution for long time 
at x / H  = 0.5, y / H  = 0.953 is given in figure 6. The unsteadiness is chaotic; there 
are, however, two (ranges of) dominant frequencies: one very low frequency f’ in the 
range 0.0054.01 and another frequency in the range 0.0254.045. The latter frequency 
is close to the value 0.0531 found in the two-dimensional supercritical solution. 

Averaging the unsteadiness in time gives persistent three-dimensional structures. 
The temperature and velocity perturbations (4” = 4 - (4), where the overbar denotes 
a time-averaged quantity) are shown for different planes in figure 7. Four periodic 
wavelengths are plotted in the lateral direction. The solution seems to be plane 
symmetric with respect to y ,  and y ,  + D/2, and point-skew symmetric with respect 
to the centre points at y ,  + D/4 and y ,  + 3D/4. The line-skew symmetry with respect 
x = H/2, z = H / 2  present in the two-dimensional base flow has been broken 
in the three-dimensional solution. Instead, the three-dimensional solution is almost 
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symmetric with respect to this centre line. The three-dimensional structures are 
strongest in the horizontal boundary layers; e.g. increases by 5% (here u,,, is 
the maximum horizontal velocity at x = H/2). 

As shown for the plane x = H/2 in figure 7(a), counter-rotating streamwise 
vortices are formed in the horizontal boundary layers. There is, however, a remakable 
difference with the longitudinal rolls that appeared along the horizontal walls for the 
conducting enclosure. This difference becomes clear by comparing the temperature 
perturbations in the y-plane (see figures 4d, 7b). The temperature perturbation in the 
horizontai boundary layer has a fixed sign for the conducting enclosure, whereas wave 
structures (with sign changes) are found for the adiabatic enclosure. As a consequence, 
for the first two configurations the longitudinal roll has a fixed rotation direction, 
independent of x, whereas the rotation direction for the latter configuration changes 
sign when the temperature perturbation changes sign. 

For the adiabatic enclosure, figure 7(c) (plane x = 0.012H) shows the occurrence of 
a weak circulation parallel to the walls within the vertical boundary layers. Further, 
figure 7(d) (plane z = H/2) shows that there is also a weak longitudinal roll along 
the outer edge of the vertical boundary layers. 

6. Physical origin of the instabilities 
For the two-dimensional instabilities, the physical nature was indicated in earlier 

studies. For a conducting enclosure the first two-dimensional instability, giving a 
Hopf bifurcation with the frequency f *  = 0.255, is related to the Rayleigh-Btnard 
instability in an unstably stratified environment. Arguments for this were given by Le 
Quert (1987) and by Janssen & Henkes (19954. 

With respect to the two-dimensional structure and stability for a square adiabatic 
enclosure, Armfield (1992) and Ravi, Henkes & Hoogendoorn (1994) have shown 
that the separation in the corner is due to a thermal mechanism. Le Quirk (1987) 
has suggested that the first instability in this enclosure was possibly due to a Kelvin- 
Helmholtz instability in the detached boundary layer; Janssen & Henkes (199%) 
have performed detailed computations which strongly support the hypothesis that the 
frequency that first occurs, f’ = 0.0531, is indeed introduced by such an instability. 

The nature of the three-dimensional instabilities found in the present study can be 
judged from the type of energy contained in the three-dimensional spatial structures. 
Therefore we consider the quantity 4(x,t), with # = 4 - 4, and @’ = 6 - (6). 
From the Navier-Stokes equations, using the periodicity of the solution in the lateral 
direction, it can be easily shown that the energy equation for (zii”Ui”) reduces, after 
integration over the domain, to 

Ptot + Gtot - €tot = 0, (6.1) 
with 

GI,, = Jw SH Gdxdz; G = gp(~”T”), 

etot =Iw/ x=o z=o edxdz; €=v(--). axj axj 
Here P is the energy source due to shear, G is the energy source due to buoyancy, 

x=o z=o 

H aaill auill 
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(a> 

FIGURE 8. Shear source P (left-hand plots) and buoyancy source G (right-hand plots) in the 
energy equation for the three-dimensional structures (solid/dashed lines denote positive/negative 
contributions): (a)  conducting enclosure ( D  = H, Ra = 1.8 x lo6), ( b )  adiabatic enclosure (D = H/4, 
RU = lo8). 

and e is the rate of energy dissipation. For a steady flow, the first term in P is 
zero. Evaluation of the nonlinear three-dimensional solutions reveals that the total 
energy source consists of 88% shear and 12% buoyancy for the conducting enclosure 
(D = H ,  Ra = 1.8 x lo6), and of 51% shear and 49% buoyancy for the adiabatic 
enclosure ( D  = H / 4 ,  Ra = lo8). This indicates that the three-dimensional instabilities 
have a combined thermal and hydrodynamic nature. 

Figure 8(a) shows the distribution of P and G for the conducting enclosure. The 
shear is largest in the horizontal and vertical boundary layers. The buoyancy is largest 
in part of the horizontal boundary layers, and in the upstream part of the vertical 
boundary layers. In the downstream part of the vertical boundary layers, the buoyancy 
is negative, and it thus decreases the kinetic energy in the three-dimensional structures. 

Figure 8(b)  shows the distribution of P and G for the adiabatic enclosure. Contribu- 
tions are restricted to the separated horizontal boundary layers in the left upper and 
the right lower corners. Almost everywhere the shear is positive, but the buoyancy 
is alternatingly positive and negative. The positive shear may refer to a Kelvin- 
Helmholtz instability or to a centrifugal stability (Gortler instability). The buoyancy 
source and sink may be related to the temperature under- and overshoots that caused 
the separation of the horizontal boundary layers. 

Janssen & Henkes (19954 and Janssen (1994) have performed computations with a 
finite-volume method for three-dimensional rectangular enclosures. In contrast to the 
periodic boundary conditions as applied in the present calculations, they considered 
fixed, adiabatic lateral walls in the lateral direction. Symmetry with respect to the 
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midplane y = 0/2,  and with respect to the line x = W / 2 ,  z = H/2 was explicitly 
prescribed, For the square enclosure with conducting horizontal walls, a spatial wave 
modulation was found at Ra = 2.5 x lo6, with A E 0.68H for A,  = 1 and 1 = 0.9H 
for A ,  = 2. These wavelengths are within the range 0.6 < 1 < 1.1, which we found 
to be linearly unstable in $4.1. The occurrence of the wave modulation shows that 
the lateral walls only affect the solution close to the wall and that the instability is 
due to an intrinsic three-dimensional instability of the two-dimensional base solution. 
Janssen & Henkes find a periodic supercritical flow (with frequency f* = 0.266), 
whereas we find a steady state. This difference is most probably due to the prescribed 
symmetry, as we also found an oscillating state with about the same frequency if 
symmetry was prescribed ($54.1 and 4.2). In a cubical enclosure at Ra = lo8, with 
adiabatic horizontal walls and fixed lateral walls, Janssen (1994) finds a steady three- 
dimensional state, whereas we find an unsteady three-dimensional state (using periodic 
boundary conditions). This difference is most probably due to the difference in lateral 
boundary conditions, as Janssen also finds an oscillating state if A,  is increased from 
1 to 2. His solution shows a wave modulation with wavelength 3, = 0.18H, which is 
close to the wavelength A = H/4, that we calculated to be the most unstable linear 
wave. Our time-averaged three-dimensional solution for D = H/4 is very close to 
Janssen’s three-dimensional steady solution not too close to the lateral walls. For 
example ST,,, = 0.034AT in the cubical enclosure, and 0.030AT in the enclosure 
with D = H/4 and periodic boundary conditions. 

To the authors’ knowledge, up to now no experimental studies on the intrin- 
sic three-dimensional instability of natural-convection flow in square differentially 
heated enclosures exist. Briggs & Jones (1985) have performed measurements in an 
almost cubical, differentially heated enclosure filled with air. The horizontal walls 
were conducting, and the lateral walls were adiabatic. They measured the different 
frequencies, which were also found in subsequent two-dimensional numerical studies, 
but they do not report any three-dimensional structures. Hiller et al. (1989) have mea- 
sured the high-Prandtl-number flow in a cubical differentially heated enclosure, with 
adiabatic horizontal walls and adiabatic lateral walls. When the Rayleigh number is 
increased they find a continuous change in the topological structure of the flow, which 
includes three-dimensional vortical behaviour. Hiller et al. suggest that these effects 
are due to their failure to achieve true adiabatic conditions on the lateral walls. We 
agree with this, and think that their three-dimensional structures are not due to the 
intrinsic three-dimensional instability of the two-dimensional base flow investigated 
in the present theoretical study. 

There is thus a need for new experiments that can validate our results. A suitable test 
configuration is the differentially heated square enclosure with conducting horizontal 
walls (which are much easier to realize than adiabatic horizontal walls). The lateral 
walls should be sufficiently isolated to minimize their effect on the stability. The depth 
of the enclosure should be sufficiently large (say A,  2 3) for the most unstable waves 
(A = H )  to fit several times in the enclosure, and for the lateral walls to have a 
negligible effect on the three-dimensional stability. 

7. Weakly turbulent flow for the square conducting enclosure 
7.1. Two-dimensional approach 

As described in $3.1, the first instability for the two-dimensional square enclosure 
with conducting horizontal walls occurs at 1.8 x lo6 < Racr,2D < 2.3 x lo6, giving a 
Hopf bifurcation with f*  = 0.255. We have further increased the Rayleigh number 
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61 x 61 81 x 81 

ti" 475 475 950 1900 

0.288 0.287 0.287 0.287 
- 
W,,, 

(gfiATH)'12 

0.137 0.136 0.134 0.137 
- 
Nu, 23.8 23.8 23.9 23.9 
- 
S 0.367 0.388 0.391 0.389 

0.00202 0.00192 0.00185 0.00180 
- & 0.000142 0.000140 0.000133 0.000132 

G! 0.00424 0.00369 0.00384 0.00384 
- 

TABLE 2. Some characteristic time-averaged values for the two-dimensional 
conducting enclosure at Ra = lo8. 

up to lo8. This Rayleigh number is so high that the unsteady solution at large time 
can be referred to as chaotic, highly transitional, or weakly turbulent. To examine 
the unsteady flow evolution, different monitoring points for the temperature were 
considered, which are positioned in the horizontal boundary layer, in the vertical 
boundary layer, and in the core region. 

We are interested in the large-time state of the solution, and not in the decaying 
transients caused by the specific initial solution. As the asymptotic state at Ra = 10' is 
unsteady and non-periodic, it is difficult to detect when the transients have decayed. In 
earlier two-dimensional studies, in which either a steady, or periodic or quasi-periodic 
asymptotic state was found, the transients took about one tenth of the diffusion time 
scale H 2 / v ,  which is the time needed to damp the internal wave activity in the core 
region. For example, Schladow, Patterson & Street (1989) made a detailed numerical 
analysis of the transients to a steady final state for water in a two-dimensional square 
differentially heated enclosure filled with water. Using these findings, for the present 
case the decay time is guessed to be about t' = 1200. As a consequence, the unsteady 
solution with an 81 x 81 resolution was first integrated for more than 1000 convective 
time scales, before the time averaging was started. 

The averaged solution over the time tiu = 475, and over the double averaging 
times 950 and 1900, are compared for different characteristic quantities in table 2. 
The table gives the maximum for W, k ,  T'2 and u" at half the enclosure height; the 
maximum of zi at half the enclosure width; the temperature stratification 3 at the 
enclosure centre (with S = ( H / A T )  ( d T / a ~ ) ~ ) ;  and the time- and height-averaged 
heat transfer through the hot wall, Nu, (where Nu, is the height averaged value 
of ( H I A T )  ( a T / a ~ ) ~ ) .  The turbulent kinetic energy is defined as k = (2 + w'2)/2. 
The table shows that both the first-order - statistics (Emax, a,,., Nu, and 3) and 
the second-order statistics (k,,., u'w,,,,, TI2), for the 81 x 81 resolution and with 
tiU = 1900, have become practically independent of the averaging time. When the 
time integration was stopped, the first-order and second-order statistics had become 
almost fully symmetric with respect to the enclosure centre (differences are below 

- 
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FIGURE 9. Conducting enclosure at Ra = lo*: (a) isolines of turbulent kinetic energy, (b) isolines 
of temperature variance, ( c )  instantaneous velocity fluctuations, ( d )  instantaneous temperature 
fluctuations. 

3%). To verify the spatial accuracy, the table also includes the solution for the 61 x 61 
resolution, which is averaged over the time tiu = 475. 

7.2. Two-dimensional structures 
As was also found for Ra = lo6, the core at Ra = 10' is still well stratified and 
almost motionless. The largest velocities and the largest temperature gradients occur 
in the horizontal and vertical boundary layers. The perturbation, as represented by k 
(figure 9a) and T," (figure 9b), are concentrated in part of the horizontal and vertical 
boundary layers. 

Typical instantaneous fields for the velocity and temperature perturbations are 
shown in figures 9(c) and 9(d). Fluctuating structures along the horizontal walls are 
either convected within the horizontal mean flow or directly dispatched from the 
horizontal boundary layers into the core region like thermal plumes. Perturbations 
coming from the horizontal boundary layers are also convected into the vertical 
boundary layers where they propagate as travelling waves. 

The left-hand graphs in figure 10 show typical time signals of the temperature 
at different monitoring points, and the right-hand graphs give the corresponding 
autocorrelation functions. The difference between the curves for an averaging time 
tiU = 778 and twice this time is only small, which confirms the accuracy. The best- 
correlated time scale t b  (or frequency f = I /&)  is represented by the first local 
maximum in the auto correlation function. 

The monitoring point in the horizontal boundary layer has the dominant frequency 
f *  = 0.16. This is somewhat below the first frequency f '  = 0.255, which entered the 
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FIGURE 10. Analysis of the temperature fluctuations at different monitoring points in the conducting 
enclosure at Ra = lo8; left-hand graphs give part of the time signal, and right-hand graphs give 
the autocorrelation (-, tiv = 1556; - -, tio = 778): ( a )  x / H  = 0.054, z / H  = 0.018, ( b )  x /H = 0.018, 
z / H  = 0.75, ( c )  x / H  = 0.5, z / H  = 0.5; B = ( T  - To)/AT. 

solution at Racr w 2 x lo6. The monitoring point in the vertical boundary layer at 
y / H  = 0.75 shows a clear dominant frequency f '  = 0.61, close to the boundary-layer 
frequency f '  = 0.61 found by Paolucci & Chenoweth (1989) for an adiabatic square en- 
closure at Ra = 3 x lo8. The enclosure centre shows a dominant frequency f '  = 0.077. 

The dominant frequencies found in the different regions of the enclosure seem 
to be related to the following physical mechanisms. The first instability in the two- 
dimensional conducting enclosure (at Racr = 2 x lo6, with f' = 0.255) is known to be 
due to a Rayleigh-Bbnard-like instability in the locally unstable vertical temperature 
gradient in the horizontal boundary layers. The same mechanism still seems to be 
present at Ra = lo8, giving the dominant frequency f *  = 0.16 (most clearly visible 
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FIGURE 11. Linear stability for different wavelengths in the conducting enclosure at Ra = 10'. 

in the horizontal boundary layers and in the initial part of the vertical boundary 
layers). These Rayleigh-Benard oscillations seem to trigger Tollmien-Schlichting-like 
travelling waves at heights z > H/2 in the vertical boundary layer along the hot wall, 
with the frequency f '  = 0.61. 

The low frequency f '  = 0.077 in the core seems to be related to internal wave 
motion, which probably gains its energy from the Rayleigh-Binard instability along 
the horizontal walls. As shown by Turner (1973) internal waves with frequency f 
propagate at an angle 8 with the horizontal, where 6' is given by 

271 * case = s1/2 f . (7.1) 

Here S is the gradient of the thermal stratification, H / A T  ( d T / d y ) .  As S turns 
out to be almost constant in most of the core region of the heated enclosure, we 
can expect that equation (7.1) provides a good approximation. Because lcos8l d 1, 
the maximum allowable core frequency is f g v '  = S'/2/271; here f g v  is the so- 
called Brunt-Vaisala frequency. For the present case s = 0.39, giving f B v *  = 0.099. 
Indeed the dominant frequency is below, but close to, f B v .  If the analogy with (7.1) 
strictly holds, the dominant frequency corresponds to internal waves with 8 = 39O. 
According to equation (7.1) the core can only absorb energy in the frequency range 
below f g v '  = 0.099. Therefore the core cannot oscillate with the same frequency as 
the horizontal boundary layers, i.e. with f *  = 0.16. Physically, the plumes that are 
dispatched from the horizontal boundary layers transfer energy to the core region. 

1.3. Three-dimensional approach 
First a linear three-dimensional stability analysis was performed for the two- 
dimensional unsteady base flow. The linearized equations were solved, as described in 
53.1, in which the two-dimensional unsteady base flow appears as the zeroth Fourier 
mode. The perturbation energy in wavelengths 0.05H and lower damps to machine 
accuracy, whereas the energy in wavelengths O.1H and larger are growing (see figure 
11). Among the wavelengths tested, A = 0.1H is most unstable, having a growth 
rate at ,  = 0.33. It is noted that increasing the wavelength to very large values does 
not lead to stability (atc = 0.13 for A + co), because of the chaotic state of the 
two-dimensional base flow. 

In order to prevent the three-dimensional nonlinear calculation from blowing up, 
linearly stable Fourier modes must be included in the lateral direction. In this way 
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2D 81 x 81 3D 109 x 109 x 9 

ti" 1900 100 220 400 
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0.137 0.163 0.165 0.166 ( i 4ma.x  

(gPATH) ' l2  
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0.00180 0.00219 0.00222 0.00223 ( k ) l W X  m 
gBL\TH 
(m)ma.x 0.000132 0.000322 0.000341 0.000317 
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0.00384 0.00316 0.00327 0.00320 ( TI2 ) max 
 AT^ 

TABLE 3. Some characteristic time- and depth-averaged values for the two-dimensional and 
three-dimensional conducting enclosure at Ra = lo8 (D = 0.1H). 

energy from linearly unstable modes can be nonlinearly transferred to other modes 
and can be dissipated by the linearly stable modes. A nonlinear three-dimensional 
calculation was performed for D = O.1H with four Fourier modes, corresponding 
to wavelengths 0.1H, 0.05H, 0.033H and 0.025H; thus there are nine physical grid 
points in the y-direction. This calculation does indeed contain dissipating modes. The 
two-dimensional solution at large time, described in the previous section, together 
with the initial perturbation (4.1) was used to start the three-dimensional calculation. 
The time integration for the 109 x 109 resolution was carried out over 340 convective 
time scales, before the time averaging was started. 

7.4. Three-dimensional structures 
Some characteristic time- and depth-averaged quantities are summarized in table 3 
and compared with the two-dimensional solution. For the three-dimensional solution, 
the table also compares the results for the averaging times tiU = 100, 220 and 400, 
confirming that the first- and second-order statistics have become almost independent 
of the averaging time. In the table, the three-dimensional turbulent kinetic energy 
is defined as k = (u'2 + 2 + w'2)/2. The accuracy of the second-order statistics is 
also confirmed by the good symmetry that is obtained between the quantities along 
the hot and cold wall. For example figure 12 shows the maximum of ( k )  and (T'2j 
as a function of the height along the hot and cold walls (the maximum is taken 
over 0 < x < H / 2  and H/2 < x < H respectively). To check the symmetry, the z -  
coordinate along the cold wall is plotted reversed, i.e. z = 0 at the ceiling and z = H 
at the floor. The solid/dashed lines denote the maximum along the hot/cold wall, 
respectively. For (k)mx along the hot wall (figure 12a), three-dimensional effects give 
a decrease of the kinetic energy below z = H / 5  and an increase further downstream. 
For (T'2)max along the hot wall (figure 12b) the effect is exactly opposite: three- 
dimensional effects increase the temperature variance below z = H / 5  and give a 
slight decrease further downstream. 

Different time- and depth-averaged three-dimensional quantities are compared with 
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FIGURE 12. Two- and three-dimensional averaged quantities along the hot (-) and cold (- -) walls 
of the conducting enclosure at Ra = lo8 with D = 0.1H: (a) (k)mux, (b) (T’2)mux. 

- 

0 0.5 1.0 0 0.5 1 .o 
zIH zlH 

0.3 

Q! - 0.2 

E 
g 0.1 

v o  G 
-9 

4 . 1  
0 0.1 0.2 

zlH xIH 

FIGURE 13. Two- and three-dimensional averaged quantities for the conducting enclosure at 
Ra = lo8, with D = 0.1H in the three-dimLnsiona1 case (-, three-dimensional; - -, two-dimensional): 
( a )  Nusselt number along the hot wall, (Nu) , ,  ( b )  core stratification, ( T )  at x = H / 2 ,  ( c )  horizontal 
velocity at x = H / 2 ,  ( d )  vertical velocity at z = H / 2 .  

the time-averaged two-dimensional values in figure 13. The three-dimensional effects 
increase (Nu),,, by 15% (figure 13a) and decrease (S) by 12% (figure 13b). The 
three-dimensional effect on the time- and depth-averaged horizontal velocity at half 
the enclosure width (figure 13c) is large: increases by 21%. Only a small 
three-dimensional effect is found for the vertical velocity profile at half the enclosure 
height (figure 13d): (W)MaX decreases by 2%. Different turbulence quantities were 
also compared, like ( k ) ,  (m), (e),  (TI’), and the turbulent viscosity vt, modelled as 
vt = c,k2/c,  with c, = 0.09. Some of these quantities in the vertical boundary layer in 
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the three-dimensional case indicate an increase of turbulence, whereas others indicate 
a decrease. For example, although the turbulent kinetic energy is increased, the 
turbulent energy dissipation rate increases as well, giving a decrease of the turbulent 
viscosity; in the vertical boundary layer at z = H/2 the maximum turbulent viscosity 
v t / v  is 7.3 in the two-dimensional case and 2.4 in the three-dimensional case. 

In contrast to the time- and depth-averaged values themselves, differences between 
the time-averaged values at the same x, z position, but at a different y-position, still 
have not become sufficiently independent of time. However, at the time at which the 
calculation was stopped, the three-dimensional modulation was already below 1 YO. 
This shows that the unsteady processes strongly mix the three-dimensional structures, 
leaving no, or only very weak, persistent time-averaged three-dimensional structures. 

Comparison of the autocorrelations, as determined for ti, = 400 and 220, shows 
that there still is a slight dependence on the averaging time, but that the dominant 
frequencies have already become almost fully independent of the averaging time. The 
dominant frequencies at two monitoring points in the horizontal boundary layer are 
f' = 0.11 and 0.21, whereas both points have the dominant frequency f' = 0.16 
in the two-dimensional case. The vertical boundary layer at y/H = 0.75 shows the 
dominant frequency f' = 0.59, which is almost the same as in the two-dimensional 
case (f' = 0.61). The enclosure centre shows a dominant frequency f' = 0.073, which 
is only slightly smaller than in the two-dimensional case (f' = 0.077). It can thus be 
concluded that the largest three-dimensional effects on the dominant frequencies are 
found in the horizontal boundary layer. 

8. Conclusions 
It has been shown that three-dimensional perturbations initiate the transition of 

natural-convection flow of air in differentially heated square enclosures. Therefore the 
assumption of two-dimensionality, as made in earlier stability studies, is not correct. 
The two most unstable modes, found in the linear stability analysis for the conducting 
enclosure, have a lateral wavelength of approximately the enclosure size, and they are 
characterized by four and five travelling structures, respectively, within the boundary 
layers. The most unstable modes for the adiabatic enclosure give a steady modulation 
in the separated boundary layers in the corner regions. The nonlinear solution at 
slightly supercritical Rayleigh numbers is already different from what is expected 
from the linear stability, and is of a steady nature in the conducting case and has two 
distinct dominant frequencies in the adiabatic enclosure, one of which is close to the 
value found in existing two-dimensional studies. For both cases the three-dimensional 
nonlinear solution is characterized by strong counter-rotating convection rolls along 
the horizontal wall. Analysis of the energy budgets has shown that these rolls are of 
a combined thermal and hydrodynamic nature. 

In addition to the stability analyses, two- and three-dimensional weakly turbulent 
flows were also accurately computed in a conducting enclosure, at a Rayleigh number 
which is two orders of magnitude larger than the value at which the first instabilities 
occur. The unsteady, three-dimensional mixing is so strong that no, or only weak, 
persistent structures remain in the time-averaged solution. The most significant three- 
dimensional effect, as compared to the two-dimensional case, is the increase of the 
the maximum in the time- and depth-averaged wall heat transfer by 15%. The three- 
dimensional effect on the dominant frequencies is strongest in the horizontal boundary 
layers, and only very small in the other regions. Some of the dominant frequencies 
in both the two- and three-dimensional weakly turbulent flow are close to the values 
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found in two-dimensional stability analyses in the conducting and adiabatic enclosures, 
which shows that the fundamental two-dimensional instabilities, like the Rayleigh- 
Binard instability and the Tollmien-Schlichting instability, keep their identity. 
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